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. ^ , 7-., , Summary

A procedure of determining sample size and its optimum allocation to
various strata under stratified random sampling has been obtained yyhen
stratum level estimates are also' required. A more general case where
stratum level sample sizes are boUnded.is also discussed and it is observed
that in certain situations, the optimum allocation may not be feasible.

I. Procedure OF Allocation

Following Sukhatme and Sukhatme (1970), Neyman's method
of allocation consists in choosing so as to miniihize'

• ±j

v(TJ='2 (fV! {wl Sim , (i.i)
/i=i /i=i

where {N,,lN)==Wh, subject to ^ «/,=«.and its value is given by.
h=l

nn=nW,.S,j'̂ WnSn:;h=l...L. , • ,(1.2),

However, in Neyman's allocation the aim is.to minimize the variance,
of the overall mean without any regard for the precision of strata
estimates. In many situations, it is desirable to have stratum level
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estimates with specified precision and, Neyman's method may fail.
Suppose the desired precision, in terms of relative variance, for the
/z-th stratum is

where bi,'s are given constants. This gives

/j=I, . , L,

where a/,'3 are constant^ depending upon b/,, iV/,and 5|. Thus the pro
blem is to minimise ViY^,) subject to constraints

«=0 (1.3)
and

«A—«A<0, h=l, 2,..., L, . (1.4)

of course, nshould be greater than ^ a/„ otherwise the constraints
will not be satisfied.

To solve the problem, let us first minimise ViYst) subject to the

constraint (1.3) following Neyman's method. Let n*=(72*,...,«*) be

the solution. This solution will either satisfy all the constraints at
(1.4) (—case 1), or will not satisfy all or some of the constraints at
(1.4) (—case II).

Case (j) In this case,n* will be the optimum solution to the
problem, since, byHadley[I], addition of new constraints at (1.4)
will not improve the situation.

Case (a) : In this case, we take the equality sign in one of_the
L constraints given at (1.4), sayin h'-th constraint andminimise ^(rj
subject to the constraint a'j^=n}^ as well as (1.3). Following the usual

procedures for minimizing

<f>=V(¥„)+ Xi(ni+...+«i -H)+X2(a^=n^) (1-5)

let the optimum values of for be

«^=(«f,..., «|) (1.6)

which satisfies {L— I) constraints

a!—ni,<0{oTh^h' (1.7)

with strict inequality and also let

. , X3<0 (1.8)
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Further, let F(i"J+ ^ Uh (a/,-«/,)+Wj5+i(«i+...+n£ -h)='F (1.9)
h=l

where

M;>0, for7=l (L+1).

Then in order that be a solution to the problem of minimisation of
yC^st) subject to (1,3) and (1.4); it is necessary, Kuhn and Tucker [2]
that and some m®=(m®,..., m|+i) satisfy

^=0,nn>0,h=l,..;L ...(1.10)
OW/i ,

and

|̂ >0, |̂ H;=Oand ...(1.11)
for j—l,..., L+l, and also m? =0 if they-th restriction in (1.4) comes
out to be with strict inequality at Since the solution (1.6) satis
fies (1:7), we get

. m¥=0, for;?^/!'and (L+I),

Then 'F reduces to

'̂=V{Ys,)+Uh, (a/,/-«/,/)+W£+i («! + ...+«£—n)

if we put

and

We note that

M|.>0by(1.8)

«!+i>0

and

30 0^

9W/,- 9Wi;+i,
...(1.12)

at K®, Mj. and Thus the necessary conditions for rf to be opti
mum solution to the minimization problem are satisfied. Also since

l^(^sf), ^ «/i and are convex functions of conditions (1.7),
(1.8) and (1.12) are alsosufficient, Kuhn and Tucker [2], Thus, if at
(1.6) is the optimum Solution to the minimisation problem of F(7j,)
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subject to (1.3) and (1.4). It is to be noted that the solution obtained
through the above procedure, has to satisfy (r.7).and (1,8).and only
then it becomes optimal solution. The satisfaction of (1.8) also
means

^ (W;A)/(«-fl,J>W,„ S,,lan,
.h^h- ^ .

(1.13)

If the above solution does not give the optimal solution, we
make another inequality constraint in (1.4) as equality constraint and
proceed as above. If this also does not give'the optimal solution, we
continue the process until we have tried all the combinations of inclu
ding just one of the inequality constraints with equality sign. If the
optimum is not attained by this, we continue the process making two
or more inequality constraints as equality till the optirnum is found.

. . . •Note. It is stated, above that Wj—0. for j^K, (L.+ l) if the
solution (1.6) satisfies (1.7) with strict inequality. The condition ; of
strict, inequality is, however, not necessary fp? the ,corresponding Uj
to be equal to zero. For,'let 'the" solutibn 0.6') satisfy (1.7) with
equality at /j"-th stratum. This means that ^.

and

hh^H'̂ {n~a,:) Wn Snl ^ "W^ S,.
h^h-

/=«/,"=(«-«/,') w,;'s,nY, .
h^h-

If we add ^3 W—n,") to (1.5), we get the valiie df " \

>13= ^ Wi,Si, I{n—a,,'—ah") •+Wi" Si"Ian" ^
h^h\ h"

1(S (̂«-« '-an') j(- WC Su la,n
h^hji". . . -

The'second factor of (IVl6) is equal to -

X

...(1.14)

...(1.15)

...(1.16)

Wn S,-W,::Sny{ji-a,;-a,;')l-Wi:.Si:i^^^ '/
h^h- • -
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which will be zero if we put the value of a,;' from (1.15). This giy^s
Us=is=0, Thus if the solution satisfies (L—I) constraints

for h=^h'

and also if Xa >0,.n^ is an optimum solution,-

2';- Optimum Sample Size

Here we minimise

subject to constraints n , .

•: • i ^ L .
• nyj-I iwisiM- 2 wisiiN,

h=\

•' V."' =F, a constani

h=\

...(2.1)
and

«A<0 for h=\, 2, L. ...(2.2)

• - The problem ,is similar to the one discussed' in Section ! and
can be solved accordingly. .'j , . ^ ,

-v,;; Note, i;:- 'In.sections I —!•, we cannot'haye constraints like.

since minimum value of'F(F,,) will ' be approached when«/,=n.••
Siitfi^ai'ly we cannot have F(ri,XF. '

, , , ,Note 2. The problem ofoptimum allocation of sample witli
given cost and "miriimuin precision to stratum estimates as also the
determination; Of-minimum totai:cost;with given ; precision of'jP^, .^nd
gjyen mininiurn precision of stratum estimates can also be solved in

S'&tibn

3. Optimisation WITH SbMB Other CoNSTRAiNTS

, In some situations instead of conistfkints l as
iti Section I, it may be desirable to haVe-

• nn'̂ dhioT h=\, ,..i I,.- • ...(3.1-)'
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where d'j^ s are given constants. This problem can also be solved in

the manner given in Section I. Of course, there has to be another
constraints,

«/,>0, h=\, ..., L.

A general case will be when we have constraints

dh > rth > ah for h= I, ..., L. ...(3.2)

In such a situation, we first solve the problem with constraints

> a,, or d,, > rih

only and at each stage of this solution we see whether the general
constraints dh rih'^ Uh are also satisfied.

We stop when this has been achieved and that solution will be
the optimum solution. However, in this general case, the solution,
sometimes, may not exist even if we have

2 4 > 2 Oh ...(3.3)

4. Application of the Procedure

The procedure given in section I is, in practice, notlengthy asit
appears to be. We discuss the cases when one, two or more cons
traints given at (1.4) are not satisfied.

. Case 1. Suppose after allocating the sample following Ney-
man's method i.e., after putting

rih'^WhShioth^i, :..,L . -(4.1)

only the first constraint at (1.4) is not satisfied, i.e. .
ai>ni .-(4.2)

and the otherconstraints are satisfied. We put (4.1) also as
nh=£ Wh Sh for h=l, ..., L ...(4.3)

where 5 is a constant. We discuss different situations as follows :

(A) We assume that in strata other than the first, the cons
traints

Hh > Oh for h—2, 3, L , .

are satisfied after putting (4.1) Let us take•
P=a2 ;..(4.4)
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from (4.3) for the second stratum where P>0 is a constant. Suppose
we allocate («a~P) units to the second stratum and thereafter, we
allocate lemaining units following Neyman's method. Further,
suppose that this allocation satisfies constraints of (1.4). Now in
order that this allocation is optimum, (1.17) also should be satisfied.
This means that

2 :WhS,J{n-a^)>WiS^lai . •
M2

or

W,. S,j(^£^ mSh+^ )>PFa S2l£ W, 52-p]|
h^2

W„5„<0

h=l

or

...(4:6)

a condition which is never satisfied.

(B) In this situation, in addition to (4.5), we put

-ff Ws 53-8=03 -(4.7)

where S>0 is a constant and allocate tt«—B and «3—5 units to second.
and third strata respectively and remaining units following Neyman's
method. Suppose that this allocation satisfies cdiistraints of (1.4).
Now in order that this allocation is optimum, it should also satisfy

2 W,,5,,/(«-aa-a3)>W2 5'2/a2
h^2. 3

and

^ . W/, Si,Kn~a2~cts). > W3 Ss/cs
^9^2.3 . V

which mean that

and

W,,5/, + S WaSa < 0

li^3

sJ W/, S!,+?> W3 iSs < 0
h^2

the conditions which are never, satisfied.

...(4.8)

...(4.9)
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Proceeding as in Situations (A) and (5), it can be shown that
the optimum -allocation will not be attained unless we allocate 'fli'
units to first stratum. This, in general, shows that if after allocating
the sample following Neyman's method a particular constraint at
(1.4) is not satisfied, the same constraint is to be put with equality
sign in order to arrive at an optimum solution. After this, we should
allocate the remaining sample to remaining strata following Neyman's
method and if this allocation satisfies all the constraints at (1.4), this
allocation will be optimum allocation as we prove at situation (C)
below.

(C). If, after alfocating the. sample following Neyman's
method, (4.2) holds, we allocate ai units to the first stratum, and
n—ai units to the remaining strata following Neyman's method.
Since ai > m, the number of units in the remaining (L—1) strata
will now be reduced from what was allocated following (4.1). If
this allocation satisfies remaining constraints of (1.4), it will be
optimum allocation provided it also satisfies (1.13), which means that

L , L

(̂ W„ S,. j/( Sh-ai ]> SJa:.
h^i A=1

or

ax>o.WxSx ...(4.10)

which holds by (4.2). Thus this allocation will be optimum
allocation.

If this allocation does not s:atisfy one of the remaining (L—1)
constraints at (1.4), the arguments at (A), (B) and (C) will show that
only that constraint which is not satisfied is to be put to equality for
finding out an optimuna allocation. The procedure can be continued
till all the constraints at (1.4) are satisfied.

Case II: Suppose after allocating the sample following
Neyman's method, the first and second constraints at (1.4) are not
satisfied i.e.

«i>«i ...(4.11)
and

...(4.12)
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(A) Proceeding as in cases I(_A) and 1(8), it can be shown that
if we put equality constraints at (1.4) for strata other than the first
and the second, and then allocate the remaining sample to remaining
strata following Neyman's method, the conditions like (1.13) will not
be satisfied. This type of allocation will not, therefore, give the
optimuin allocation.

(B) Next, let us make one of the constraints at (4.11) and
(4.12), say at (4.11), as equality constraint and the constraint in one
of the remaining strata, say in the third, as equality constraint and
allocate the remaining sample to the remaining strata following
Neyman's method. Suppose this allocation satisfies all the constraints
at (1.4). This allocation will be optimum if it satisfies condhions
like (1.17) ie. if

Y Wn 5-/, ^^ IV,. S,-a,-Sja^ ...(4.13)
h^\,3 li=l

and

(2 Si, )/( ^2 mS,-fli-Us) >Wi Sila,
11^^=1,3 /!=1

...(4.14)

(4.13) gives

L

' -

h=l

or

W2 ^3 (fli-^ Wi Si+a,--8 ^3 53)>(^ Ws Ss-a^) V Wn S,.
Ml,3

• • .'..(4.15)

Since ^ Ws S3>a3, RHS of (4.15) is positive. Now, in order that the
present allocatian does not satisfy (4.12), it is necessary that

•<3 W3S3 cis^cii—^ fVi Si •••(4.16)

otherwise the present allocation will reduce the earlier allocated
sample to second stratum (!•«• «2) and (4.12) will stands (4^16)will
mean that LHS of (4.15) is negative and (4.15) will not be satisfied,
^his allocation is not, therefore, optimum.

/ L
^ Wn Sn> Pf'3 ^3 (^^ Wk Sn-a,-a, j
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In a similar manner it can be shown that if we take only one of
the constraints at (4.11) and (4.12) as equality and also take more
than one other constraints a^l.4) as equality, the solution will not
be optimal.

(C) Further, let us take constraints in the first and second
Strata asequality and allocate the remaining sample to remaining
strata following Neyman's method. In order, that this gives an
optimum allocation, it should satisfy (1.4) and also conditions like
(1.13). The satisfaction of conditions like (1.13) means that

and

, L

^7^1,2 A=1
(2 ^^ 'S'/-(4-17)

...(4.18)

A^l.2 /i=l

(4.17) gives

(fli- £ Wi Si)y Wh 5'a+ Wi Si (fla- £ Sd>0 ' ...(4.19)
/!9^1,2

which will be satisfied by (4.11) and (4.12). Similarly (4.18) will also
be satisfied. Thus this allocation will be optimum if it satisfies (1.4).
If this does not satisfy .one or two constraints at (1.4), we have to
put the particular constraint/constraints which is/are not satisfied as
equality constraint (j) and then proceed to see whether this revised
allocation satisfies (1.4). The process may continue till we get the
optimum allocation.

Case III: The procedure given in case II can be extended to
cases where, after allocating the sample following Neyman's method,
more than two constraints at (1.4) are not satisfied.

Example 4.1 : Table 4.1 gives the values of W/, S/, and a/, and
the various allocations of the sample of size 1450 to nine strata.
Variance of the mean, ignoring f.p.c., has also been given for dif
ferent allocations. Column 4 gives the values according to Ncj'man's
ailocation. After adopting this allocation, constraints (1.4) in stra
tum numbers 3, 5 and 9 are not satisfied.. If we put them as equality
constraints and allocate the remaining sample to remaining 6 strata



TABLE 4.1

Allocation of the sample

Stratum
number a

Neyman's
allocation

I li III IV V VI VII VIII

1. 2. 3. .4. 5. 6. 7. 8. 9. 10. 11. 12.

1 36.53 63 73 68 62 63 63 69 69 61 65

2 24.62 45 49 . 46 42 45 • 45 47 45 • 49 46

3 13.15 45 26 45 45 45 45 45 45 48 46

4 314.63 600 627 584 . 600 600 600 oOO 600 604 615

5 100.37 260 200 260 260 260 • 260 260 260 264 265

6 151.93 290 303 282 290 290 290 290 290 294 . 297 .

7 57.26 79 114 106 96 93 79 79 108 83 81

8 22.17 15 44 41 37 36 50 42 15 19 16

9 6.58 18 13 18 18 18 18 18 18 : .22 19

Total 727.24 1415 1450 1450 1450 1450 1450 1450 1450 1450 1450

Variance — — 365.00 372.08 372.97 373.14 375.56 , • 375.02 385.5L 383.84 • 2?n.ii

>
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following Neyman's method, the constraints in stratum numbers 4
and 6 are not satisfied (Col. 5). If we put these also as equality
constraints and allocate the remaining sample to remaining 4 strata,
constraints in stratum numbers 1 and 2 are not satisfied (Column 6).
If we put these also as equality constraints and allocate the remaining
sample to remaining 2 strata, all the constraints as well as conditions
like (1.13) will be satisfied and this gives the optimum allocation
(Column 7). Columns 8 to 12give examples of allocations where all
the constraints at (1.4) are satisfied but these are not the optimum
allocations.
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